
GALACTICOMM CODING STANDARDS

1. Why Standardize?

·i by Ti_m, ~tryker
· tr2 ·:ruri{' 1990
,. ,.,. • • .,i.

,.,. ·- }' ·,t:' ,'V't,.'!,.1 • .:-1. ;. " .-t ,.,. '

The .benefits ·of: ~PJ,~lactii~fllI,!l"-program121et-s us'ink''th~ s.ame st~~dards
for code des igrf. and· j~5!~~f ar~ _subsl;i!1~:i.a.L We '>ejri:~ ~e~~ :~ac~t ?c·~l_le;-',s ~ .code
more easily; \,;jithou; '.~oni'eat_1tly J.?~ing~_,truck by··unf.ijiil:i:af:-~gimattlng: We
can make mod·s:··to e~cli·qf:~ers 1 cqi:le,.without ·creating':; riff~h%6ih:'.6f:dif.f~rent
coding :styles. In 'ad.df·t::i,_on, if we choose the "right"' st:an}lar~, 1otir mq.t.ual
productivity can b_e'~e\thanced. Uetails like whether ·or n§t ·.you alwa.Y,,S.~put
curly-bra~es arou'ni:f an i-f.._clause, for example,' -h:ave.: a significant itrq>~ct on
the ti]Jle it takes to change a programming construct, both during in!tial
development and later in the life-cycle of the program. .,

~ -:: " ::, 1.."

The obj~ctions to code format standardization generally fall Jn;a~one
of the following categories: . . , --~ ·

it

",~t takes:; time to ~Eiarn the standards, that could be spent ~qding. 11

! ?' "My way is be~t?:er.!1
.•• _.; ••

"It. 1 s hot that~ oif \:>'f a deaf.•11 .

"Just" us~ a pr~t·ty-pri~1,.t'e'r progra~., if you think\ it Is so im~or~_'.3:nt ! It

It doesn !'t take· yery", l~ng·· to· lear~- at all, since most of the standards
out~ined here are otd~na.ry' ~OIJlll19_~,: ~.eqae. . In the J:cases--~€~re ;;an arbitrary
choice has been made,· su~h as ~l,~ays_,_pqtttng spaces around ,.a .clouble-equ~ls
(x ==-,y), -never around a -~ing.~~-;~ah·1-(xfy), -itl. ~s not·'.!:lf~·:.{hat .u~rd to
remember and it quickly oecoqie·s . .s.eeon.d: ·nat;ure .• ,'<!I'l\'e c.enttat·--tning·is ~hat
there BE· a standar·d·,_· so····chat' you ~dQJl,1 t hav-a.,to··s.top"ari<f: thttlk..;. ·each l{ne of
code ¥OU w,r:i:te, how i~· sltJµid b-e·~_t· ap~ar-. The. ·time -l<>~t~~~'rtting,.:the'
standard is very quickly ~ecouped becau~e bµgs ·are reduced, code f~.r~~sed
more,, and more i,;nterohange with othe.;- .programmers·become,!l poss.ib•!e; · '·

.,-. . • :; '.1 :·-.\., ~ ~ ': ,, ;. • ,),.:.~ :·} . "

Your way 'may b·e· better~ hi,\; ii ~i is >different ,fr6ni ~t&E!~, pe,op,l~' s, yqu
will have a hard time reading,,tneir ~o,q.e ·and.,,vice .vf!rsa •.. Ydur ·eye'~ get. µs~d

" ,._ • - " • ' l l ••,;' r e.,.f '" . ' ,. t., ~._ •

to s~eing code laid out in a ,eert..ain ,:way-~afte-r ,ia while, ~a«when you ~q~v,e. to ,
deal :with code 'i:n w):ricl,l .the .,p-J.acem.,ent_;of brace:§!l '~1)~~f 'up'P.er··and. ~~~~r"' .. ~
case,: spacing convent=to~~ a'nd so._fo+:"th .a.r.e:..-.diffe~nt froni i?pi§; Jh~~· ··
compi;ehension of every l'ine ·.ts~ ~.-~at_4=.1~-~.~~~ ·e:l:l•~· ar~?~~:·{\lol~~-:~!;W~.&P
supply ••• the less you. h~ve to devote to d_e~i!:t!-i.n'g,' the forma'tt'tng of·
someone else I s· cod:!. th¼!·_ mop~]P~- ~~ve avakl:aj)--1:.e :ttt understand'" tiiti)t,'_.s r,,ea~~
impo-rtant, which is··its content and func. .. tJp~r;,i _..._, :-,r,.=•-.:, •,--'1

:, :..
1

• ... ,
" ~ :.\ .. ~~ . ~-~ ·~

:. ~ .. •·. ,;: ,n··)~,~ :'t't., · •. ,.:. •.

. ~ ,"Forplatt'ing rfs ·definitely· '"not' d',:a·t- bi,g: of a ,deal" when c~mpareg witq
: .· t;he- issues o·f. code archicecture,_,.flow, .;en<;.:ap·suladdn;•: et.~[--i'h'ac;,.ri.ihy· ii:'s
-k. :.· .•. ~illy to let it::.•int:er'fere with. th,e underst:andin~--of'. t_thej~ ··1a~~er. if!~~E\l~• ""
i: .. · R~adigg c°.d-e ;n an· un~~mi_Har· f~ciat is J;ike· ½.l~gg·~~(•t~~dii~li _!.ai~~ *~; 'y_o,~
·:; . have;· tq::<:Co.n·S'.ctous ly dope ·out!: whtcl,\., .br~ce · goes wt th· ·1"tt(1on, · ft'i<.f w\lE!tl;ler ·
~: .. some;thing,';'_:,.is'.a 'Comparison or' an ·a.ssign.~~nt, ··etc • .'Readibg c·oti~··ttfJ'f'io~o.ks
f like, wh:at· you··a·re1ci.accustomed to, you ~~re~-1. nptice :-t:b:at 'thei:-"i{is. a for_rn~.t at

all.,,- you see st-raight through it, to the-. important 'aspects·of'.wha~. the
cod~ actually doe·s. :• · , , ·: · · ; · · · ·

.... ~

,.,

- 2 -

Pretty-printers are not the solution, either. Besides the fact that
pretty-printers are time-consuming to configure and use, there is an
inherent benefit in writing your actual code in a standardized way. Your
thoughts become more organized, because the layout on the screen in front of
you is organized and can be read without conscious effort. If another
programmer is working with you, he may be able to catch bugs that you
didn't, just by looking o~er your shoulder as you edit. And, calling in a
"guru11 to help with particu.larly knotty problems will not result in hostile
mutterings in your direction.

2. C Source

The standards we adhere to are basically those of Kernighan and
Ritchie, with a few small extensions.

2.01 Block Comment Header

Each C source file should begin with a block comment of the form:

/-lrl<*irl:****-lric-lric-lric**-k-k-k-k**-lrlr-k*-!ri:**'lrlrlc****~-k*****-k-lric*•/,drlrk-lrl<*-k-k***-k-k***-k-k*~*

* * * FILENAME.C *
*

Copyright (C) 19xx-19xx GALACTICOMM, Inc. All Rights Reserved. *
*
*
*
*
*
*

~rief description of the contents of the source file.
*
*
*

- Author MM/DD/YY *
* *
*****irlrlrk-lric*-lrlrl,***-!ric-k-lri:-k-k*-k-k-k**-k-k-k-k*-lrn-lric**-1rirn_"lrirlrlc***-lrlrn*****-k-k*********-k-k-k*f

2.02 1 #include 1 Statements

Following the block coIID11ent header should be all of the C header files
to be included in the compilation, in order from the most standard to the
most application-specific. Generally 11 stdio.h•' should be the very first in
the list, followed by files like "ctype.h", "dos.h11

, and nsetjmp.h". After
these would come Galacticomm 1 s own global utility files such as "btvstf.h"
or 11dosface.h", followed by application-specific files such as "majorbbs.h"
or "usracc.h". At the end of this list would appear specialized headers
only shared by one or two source files, such as 11flash.h 11 or "message.h".

Popping an '#include' into the middle of other declarations, or code,
is frowned upon.

The use of angle brackets to enclose the included filename as opposed
to double-quotes is a matter of personal taste. We use double-quotes (and
give the compiler explicit path directives at compile-time), but this is not
a critical issue.

··~

- 3 -

2.03 Declarations and 1 #define 1 Statements

After the '#include' statements should come all of the public data
declarations, external data declarations, structure declarations, global
non-int function return value overrides, and '#define• statements in the
file. Use whatever order seems clearest -- there is no need to put all of
the structure declarations together, all of the '#define' statements
together, etc. However, once the code starts, there should be no further
appearance of any of these five classes of statements except in unusual
circumstances. The purpose of this is so that when someone reading the code
sees a reference to one of these things, he knows that if it 1 s in the file
at all (as opposed to a header file), he can find it toward the top: if he
hasn't found it by the time he reaches the first actual function definition,
it isn 1 t there.

Within function definitions, all declarations of local and automatic
variables, local structures, and local non-int function return value
overrides should appear at the very top of the function, indented one tab
stop. A blank line should separate these lines from the first line of
actual code.

2.04 All Caps for 1#define 1 Constants

Generally the only use of upper case in a C file (besides in comments
and quoted character strings) should be for constants defined via the
'#define' statement. If the symbol defined in a '#define' statement takes
an argument list, ·though, the symbol may be in lower or upper case. The
central rules are: always use upper case for CONSTANTS defined via
'#define•; use lower case for all normal non-preprocessor-related code text.

2.05 Data Declaration Comments

Each variable declaration, and each element of each data structure
declaration, should have a short (25 to 40 byte) comment on it.

2.06 Order Functions 'Top Down•

The order of arranging functions in a source file should be generally
from the highest-level functions to the lowest. This is not an ironclad
rule, except that the function 1 main() 1 should always appear first if it is
present. Similarly, function groups in which some function acts as a kind
of master gateway to a group of subsidiary functions should generally have
the master function first, followed by its direct subsidiaries, followed by
subsidiaries of those subsidiaries, etc.

2.07 Code Comments

The code should be clear and understandable by the very
design and architecture. Also, by the appropriate choice of
function names it should be as self-documenting as possible.
there should be very few actual comments in the code itself.
function should have a one-liner comment, and functions with

nature of its
variable and
Therefore
Ideally, each

special

- 4 -

considerations or especially complicated argument lists can have explanatory
text around them. However, if you think that your code would be unclear to
a reasonably diligent reader, the solution is not to comment the unclear
aspects. The solution is to redesign that portion of the code.

2.08 Short Names

Variable and function names should be no more than 8 characters,
preferably no more than 6. This keeps the code from getting bulky and
requiring a lot of continuation lines. Shorter names also take less time to
read, and less time to type. They can be just as easy to understand and
remember as long names, if chosen well. The name 'set attribute()' is no
more intrinsically clear than 'setattr()', and it takes much longer to type
(over and over!), and to read afterward.

The use of the underscore character, in particular, should be avoided
whenever possible.

2.09 Indentation and Curly-Braces

Use the K&R standard of tab stops every five columns. More than this
leads to code walking off the right edge of the screen; less makes it hard
to tell, visually, which code sections line up with one another vertically.

Indent the body of every if, else, do, for, and while block one tab
stop. In a switch construct, keep each 'case' statement at the same indent
level as the 'switch' statement itself, but indent the code under each case
one tab stop.

Each and every if, else, do, for, while, and switch should have a left
curly brace positioned at the end of the opening line of the construct (or
its continuation), and a right curly brace on a line by itself at the end of
the dependent code. This rule most definitely applies even if there is only
one line of dependent code in the construct. Also, dependent code should

·never appear on the same line with the left curly brace. ·The right curly
brace at the end of the dependent code should be at the same tab stop as its
parent keyword.

In a series of if-else if-else if- ••• -else clauses, the initial 1 if 1
,

its corresponding right curly brace, each 1 else 1
, and each of their

corresponding right curly braces should all be at the same tab stop.

The only time that a left curly brace should appear on a line by itself
is in column lat the start of a new function definition, right after the
function parameter declarations if any.

Never put more than one statement on a single line: this leads to
time-wasting tradeoff analysis, and further time-wasting reformatting in the
event that the analysis is wrong, or becomes invalid in the light of later
developments.

- 5 -

2.10 Spaces

Besides in comments and quoted cha~acter strings, there should be no
spaces anywhere in your code except:

> as preprocessor statement delimiters
> for indenting
> after declarators such as 1 char', 'int', 'struct', 'static', etc.
> on either side of comparison operators(==, !=, >=, <=, <,and>)
> on either side of binary logical operators (&& and I I)
> after if, else, do, for, while, switch and corresponding close-parens
> on either side of each 1

;
1 in 'for' statements

> on either side of 1 ? 1 and 1
:' in conditionals

In particular, spaces should NOT appear around commas, or around any
arithmetic, boolean, or assignment operators. The following are examples of
operators that should NOT have spaces on either side of them:

+
+= -= *

*=
I
/=

<< >> &
<<= >>= &=

I
I= =

++ ->

A short piece of code with examples of where to use and not to use
spaces:

#define P2TSIZ 5 I* power of 2 table size
int powof2[P2TSIZ]; I* power of 2 table

compow2() I* compute powers of 2
{

int i;

for (i=O; i < P2TSIZ; i++) {
powof2[iJ=(i == 0? 1: powof2[i-l]<<l);

}
}

*I
*I

*I

Note: it is especially important to maintain the distinction between
single-equals (assignment) and double-equals (equality comparison). The
advantage here is that, once you are used to this standard, your eyes will
react to the appearance of a single-equals with spaces around it, or
double-equals without them, as an alarm situation requiring investigation.
This greatly cuts down on the class of bugs in which an intended comparison
is inadvertantly coded as an assignment.

2.11 80-Column Lines

Source code lines should never contain characters beyond the 80th
column. This keeps all code visible when scrolling through with a standard
text editor.

If you have statements that require more than 80 columns, split them
across two or more lines. There are no fixed rules determining where the

<I • • iii•

- 6 -

splits should occur -- just try to make the code as readable as possible.
This means lining up similar sub-clauses where possible, for example:

if (sameas(usaptr->userid,esgptr->msg.to)
I I sameas(usaptr->userid,esgptr->msg.from)) {

Where no similar sub-clauses exist, try to break lines at logical
boundaries, such as after commas, before '&&' and 'I I' operators, etc. When
breaking on '&&' or 'II', always put the operator at the start of the
continuation line, not at the end of the line being continued. This helps
the reader more quickly identify the continuation line as such, and not as a
new statement in its own right. Also, use a non-tab-stop column for the
start of continuation lines, as this helps further cue the reader to the
fact that the line is not a normal standalone statement.

Avoid the use of the 'backslash' method of creating continuation lines,
since this tends to mar the otherwise pristine indentation structure of your
code (except on global-declaration lines which are not indented anyhow).

2.12 Blank Lines

Use a single blank line to separate:

> the block comment header from the '#include' statements
> the '#include' statements from the global declarations section
> each new function definition from what precedes it
> the declarations at the top-of a function from its code

You can use blank lines, sparingly, in other places too, but be careful
of the syndrome that some programmers fall into in which they try to enclose
every minor grouping of variables or code between blank lines -- it is
important that the reader of your code be able to fit as much of it as
possible on the CRT at the same time. Double-spacing your code lines, in
effect, makes your CRT act like it is only 12 lines high rather than 24.
This makes it more difficult to relate sections of code to each other that
may be, say, 20 lines apart.

2.13 Start Actual Function Name Definitions in Column 1

This little bit of esoterica has several benefits. For text editors
such as KEDIT that have a primitive for string searches constrained to start
in column 1, it becomes much easier to find the definition of a function in
a file without having to wade through a potentially large number of
references to it. Secondly, it leaves more space for the one-liner function
comment on the function prototype line itself. Also, it helps to visually
separate the function name from its return value type, making it quicker to
tell exactly what the return value type is. Here's an example of the
contrast we are talking about:

vs.
struct qmitem *getpitm(who,name) /* little room for comment!*/

struct qmitem *
getpitm(who,narne) /* plenty of room for a nice long comment!*/

' -
- 7 -

2.14 ANSI Function Prototypes

There is room for debate here, and the world does seem to be moving
toward requiring ANSI prototypes for all functions before referencing them.
Galacticomm standard at the moment is not to use ANSI prototypes. The main
reason for this is coding overhead: to prototype every silly little function
as you are coding along is more time consuming than not to prototype them.
The only benefit of prototyping is that the class of bugs in which the
caller passes different argument types to a function from those that it is
expecting are caught at compile time (and maybe link-time, if the
type-checking implementation of the development environment is thorough
enough -- not all are). Our position at the moment is that· if the
programmer is any good he does not need to be protected from himself in this
way, which means that the overhead of fooling around with prototypes is a
pure waste of time.

2.15 Miscellaneous Idiosyncracies

Here are a few hairsplitters that yield a generally more graceful look
and feel to your code:

> When dealing with an 1 int 1 variable that you are using as a counter
or index, and making a test based on whether it is or is not zero,
use an explicit 'blah== 0 1 or 'blah!= 0 1 test, don't just say
'if (!blah) { 1 or 'if (blah){' respectively. This helps the code
reader grok that 1blah 1 takes on values other than O and 1.

> When incrementing or decrementing a variable on a line by itself, use
the statement 1blah+=l; 1 or 1blah-=l; 1 rather than just 'blah++;' or
1blah--; 1

• This keeps the code more general (suppose it turns out
that you need to increment it 2 instead of just l?), and it ·avoids
the incongruity of creating a net expression value and then just
throwing it away. (By convention, this incongruity often exists in
the special case of the third clause of a 1 for 1 statement, and we do
follow this practice too -- who said a standard has to be perfectly
consistent!)

> Always use parentheses around the return value (if any) in a 'return'
statement. Somehow it looks more well-defined that way. This is one
of those purely arbitrary situations where the only justification for
having a standard is that people who get used to seeing it one way
will be distracted by its appearance the other way, so to minimize
debate about nonessential issues we just mandate that return values
should always have parentheses around them and we can all relax.

> Explicitly declare functions returning int as doing so, at least in
the definition line - this alerts the code reader to the fact that
the function does in fact return a value, and the type of that value.

> Coding techniques to avoid: typedefs, the 'continue• statement, lots
of macros, particularly when heavily nested or interdependent, and
complicated data entities such as casts of dereferenced pointers to
arrays of pointers to functions returning pointers to doubly-indexed
arrays of data structures. Nuff said.

